师资队伍

教师名录

付世晓

船舶与海洋工程系

电子邮件:shixiao.fu@sjtu.edu.cn
通讯地址:上海市东川路800号,36365线路检测中心,木兰楼

36365线路检测中心,特聘教授,国家杰青

挪威技术科学院,院士


2024-今,36365线路检测中心,院长

2020-2024,36365线路检测中心,副院长

2019-今,36365线路检测中心 特聘教授

2019-今,海洋工程国家重点实验室 副主任

2013-2019 36365线路检测中心 研究员

2012-2012 麻省理工学院(MIT) 访问学者

2009-2013 36365线路检测中心 特别研究员

2007-2009 36365线路检测中心 副教授

2005-2007 挪威科技大学 博士后

2002-2005 36365线路检测中心 船舶与海洋工程 博士

1999-2002 大连理工大学 船舶与海洋工程 硕士

1995-1999 大连理工大学 船舶与海洋工程 学士

基于反馈的主动控制理论、技术与应用;

先进传感器与感知理论与技术;

逆向反演理论与技术;

基于机器学习的水动力理论与试验;

基于机器学习的CFD计算理论与方法;

水下物体运动与变形的感知与控制;

海洋管缆涡激振动;
海洋工程流固耦合;

海洋工程水弹性理论与结构分析;

海洋风电智能感知与控制;

浮体水动力与系泊;

海洋管缆截面设计、力学分析与优化,及全尺度疲劳试验;

海洋智能管缆;

船舶与海洋工程CAE软件开发。


应用对象:海上浮动机场、大型浮桥、悬浮隧道、大型网箱、柔性立管、海底管道、海洋风电等

(1)挪威技术科学院院士

(2)美国船舶与海洋工程师协会,会士(SNAME Fellow)

(3)挪威科技大学(NTNU)兼职教授

(4)华中科技大学兼职教授

(5)Marine Structures 副主编

(6)Journal OMAE 副主编

(7)Journal of Marintime Engineering副主编

(8)Engineering 特刊执行主编

(9)船舶力学、Journal of Hydrodynamics、China Ocean Engineering、Journal of Marine Science and Application,海洋工程等期刊编委

(10)国际船舶与海洋结构大会(ISSC)委员会委员

(11)船舶力学委员会副主任委员


国家杰出青年科学基金 延续(2024-2029)

国家杰出青年科学基金(2018-2023)

自然基金委基础科学中心,分中心负责人(2020-2025)

国家重点研发计划项目首席科学家

山东省重大示范工程项目首席科学家

国家自然科学基金企业创新发展联合基金

国家自然科学基金重大项目课题

国家自然科学研究基金面上项目

国家自然科学研究青年基金

科技部重点研发计划国际合作重点项目1项

工信部高科技船舶科研项目2项

上海市自然科学基金1项

上海市“科技创新行动计划” 基础研究领域重点项目1项

国际工业联合项目JIP

挪威Statoil合作基础研究基金2项

国防预研重点课题1项

其他企业、研究所等项目

Selected International Journal Papers:

[56] H Ren, Y Xu, J Cheng, P Cao, M Zhang, S Fu, Z Zhu, 2019, Vortex-induced vibration of flexible pipe fitted with helical strakes in oscillatory flow, Ocean Engineering 189, 106274

[55] H Ren, Y Xu, M Zhang, S Fu, Y Meng, C Huang, 2019, Distribution of drag coefficients along a flexible pipe with helical strakes in uniform flow, Ocean Engineering 184, 216-226

[54]J Wang, S Fu*, R Baarholm, M Zhang, C Liu, 2019, Global motion reconstruction of a steel catenary riser under vessel motion, Ships and Offshore Structures 14 (5), 442-456

[53] H Ren, Y Xu, M Zhang, S Deng, S Li, S Fu, H Sun, 2019, Hydrodynamic forces on a partially submerged cylinder at high Reynolds number in a steady flow, Applied Ocean Research 88, 160-169

[52] D Lu, S Fu*, X Zhang, F Guo, Y Gao, 2019, A method to estimate the hydroelastic behaviour of VLFS based on multi-rigid-body dynamics and beam bending, Ships and Offshore Structures 14 (4), 354-362

[54]Z Lu, S Fu, M Zhang, H Ren. An efficient time-domain prediction model for vortex-induced vibration of flexible risers under unsteady flows. Marine Structures,2018, 64, 492-519.

[53]W Wei, S Fu, T Moan, C Song, S Deng, H Lie. A Time-Domain Method for Hydroelasticity of a Curved Floating Bridge in Inhomogeneous Waves. Journal of Offshore Mechanics and Arctic Engineering,2018, 141 (1), 014501.

[52]M Zhang, S Fu, L Song, J Wu, H Lie, H Hu. Hydrodynamics of flexible pipe with staggered buoyancy elements undergoing vortex-induced vibrations. Journal of Offshore Mechanics and Arctic Engineering,2018, 140 (6), 061805.

[51]T Ren, M Zhang, S Fu, L Song. Hydrodynamics of A Flexible Riser Undergoing the Vortex-Induced Vibration at High Reynolds Number. China Ocean Engineering,2018, 32 (5), 570-581.

[50]J Wang, S Fu, R Baarholm. Evaluation of vortex-induced vibration of a steel catenary riser in steady current and vessel motion-induced oscillatory current. Journal of Fluids and Structures,2018, 82, 412-431.

[49]C Liu, S Fu, M Zhang, H Ren. Time-varying hydrodynamics of a flexible riser under multi-frequency vortex-induced vibrations. Journal of Fluids and Structures,2018, 80, 217-244.

[48]J Wang, S Fu, R Baarholm, M Zhang, C Liu. Global motion reconstruction of a steel catenary riser under vessel motion. Ships and Offshore Structures, 2018,1-15.

[47]M Zhang, S Fu, L Song, X Tang, Y He. A time domain prediction method for the vortex-induced vibrations of a flexible riser. Marine Structures,2018, 59, 458-481.

[46]Z Lu, S Fu, M Zhang, H Ren, L Song.A modal space based direct method for vortex-induced vibration prediction of flexible risers.Ocean Engineering,2018, 152, 191-202.

[45]Song, CH; Fu, SX; Tang, XY; Hu, K; Ma, LX; Ren, TX. Hydrodynamics of the Semi-Immersed Cylinder by Forced Oscillation Model Testing. CHINA OCEAN ENGINEERING,2018,32,110-116.

[44]Wei, W; Fu, SX; Moan, T; Song, CH; Ren, TX. A time-domain method for hydroelasticity of very large floating structures in inhomogeneous sea conditions. MARINE STRUCTURES,2018,57,180-192.

[43]Song, LJ; Fu, SX; Li, M; Gao, Y; Ma, LX. Tension and drag forces of flexible risers undergoing vortex-induced vibration. CHINA OCEAN ENGINEERING,2017, 31,1-10.

[42]Song, LJ; Fu, SX; Ren, T; Lu, ZQ. Phase Angles of the Vibrations and Hydrodynamic Forces of the Flexible Risers Undergoing Vortex-Induced Vibration. 2017,139.

[41]Lu, WY; Yang, JM; Fu, SX. Numerical study of the generation and evolution of breather-type rogue waves. SHIPS AND OFFSHORE STRUCTURES,2017,12,1,66-76.

[40]Wei, W; Fu, SX; Moan, T; Lu, ZQ; Deng, S. A discrete-modules-based frequency domain hydroelasticity method for floating structures in inhomogeneous sea conditions. JOURNAL OF FLUIDS AND STRUCTURES,2017,74,321-339.

[39]Wang, JG; Fu, SX; Larsen, CM; Baarholm, R; Wu, J; Lie, H. Dominant parameters for vortex-induced vibration of a steel catenary riser under vessel motion. OCEAN ENGINEERING,2017,136,260-271.

[38]Gao, Y; Fu, SX; Xiong, YM; Zhao, Y; Liu, LM. Experimental study on response performance of vortex-induced vibration on a flexible cylinder. SHIPS AND OFFSHORE STRUCTURES,2017,12,116-134.

[37]Gao, Y; Fu, SX; Ma, LX; Chen, YF. Experimental investigation of the response performance of VIV on a flexible riser with helical strakes. SHIPS AND OFFSHORE STRUCTURES,2016,11,113-128.

[36]Ma, LX; Hu, K; Fu, SX; Moan, T; Lit, RP. A Hybrid Empirical-Numerical Method for Hydroelastic Analysis of a Floater-and-Net System. JOURNAL OF SHIP RESEARCH 2016,60,14-29.

[35]Wang, JG; Xiang, S; Fu, SX; Cao, PM; Yang, JM; He, JX. Experimental investigation on the dynamic responses of a free-hanging water intake riser under vessel motion. MARINE STRUCTURES,2016,50,1-19.

[34]Song LJ,Fu SX,Dai SY,Zhang MM,Chen YF. Distribution of drag force coefficient along a flexible riser undergoing VIV in sheared flow. OCEAN ENGINEERING,2016, 126,1-11.

[33] Gao Yun, Fu Shixiao, Xiong Youming, Liu Liming. Experimental study of the effects of surface roughness on the vortex-induced vibration response of a riser. Journal of Ship Mechanics, 2015, 19, 1007-7294

[32] Wang, Jungao, Fu Shixiao; Baarholm, Rolf; Wu, Jie; Larsen, Carl Martin. Out-of-plane vortex-induced vibration of a steel catenary riser caused by vessel motions. Ocean Engineering, 2015, 109, 389-400

[31] Gao, Yun, Fu Shixiao; Wang, Jungao; Song, Leijian; Chen, Yifan. Experimental study of the effects of surface roughness on the vortex-induced vibration response of a flexible cylinder. Ocean Engineering, 2015, 103, 40-57.

[30] Gao, Yun, Fu Shixiao; Ren, Tie; Xiong, Youming; Song, Leijian. VIV response of a long flexible riser fitted with strakes in uniform and linearly sheared currents. Applied Ocean Research, 2015, 52, 102-114.

[29] Guo, Yousong, Chen, Xiqia; Wang, Deyu; Fu, Shixiao. Analytical and numerical investigation on the structural response of flexible risers under axisymmetric load. Shiyou Xuebao/Acta Petrolei Sinica, 2015, 36(4), 504-510 and 515.

[28] Jungao Wang, Shixiao Fu*, Rolf Baarholmb, JieWuc, C. M. Larsend. Fatigue Damage Induced by VIV in Oscillatory Flow, Marine Structures, 2015, v40:73–91

[27] Yun Gao, Shixiao Fu*, Jing Cao, Yifan Chen. Experimental study on response performance of VIV of a flexible riser with helical strakes, China Ocean Engineering, 2015, 29(5):673-690

[26] Mengmeng Zhang, Xiqia Chen, Shixiao Fu, Yousong Guo, Leixin Ma, Theoretical and numerical analysis of bending behavior of unbonded flexible risers, Marine Structures, 2015, 44, 311-325.

[25] Gao Yu, Fu Shixiao, Song Leijian. Experimental investigation on the suppression device of VIV of a flexible riser. Journal of Vibration and Shock. 2014, 33(14)

[24] Song Leijian, Fu Shixiao, Chen Xiqia, Guo Hong, Qu Yan Comparative study on deepwater umbilical overall response characteristics. Journal of Vibration and Shock, 2014,33(1)

[23] Wang Jungao, Fu Shixiao, Xu Yuwang, Song Leijian Tests for time sharing of vortex-induced vibration of a flexible cylinder in oscillatory flow. Journal of Vibration and Shock, 2014, 33(21)

[22] Wang, Jungao, Fu, Shixiao; Xu, Yuwang; Song, Leijian. VIV developing process of a flexible cylinder under oscillatory flow. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2), 173-182.

[21] Fang, Sam M., Niedzwecki, John M.; Fu, Shixiao; Li, Runpei; Yang, Jianmin. VIV response of a flexible cylinder with varied coverage by buoyancy elements and helical strakes. Marine Structures, 2014, 39, 70-89

[20] Jungao Wang, Shixiao Fu*, Rolf Baarholm, Jie Wu, Carl Martin Larsen. Fatigue damage of a steel catenary riser from vortex-induced vibration caused by vessel motions, Marine Structures, 2014, v39, pp 131–156.

[19] Shixiao Fu*, Yuwang Xu, Ke Hu, Qian Zhong, Runpei Li, Experimental Investigation on Hydrodynamics of a Fish Cage Floater-net System in Oscillatory and Steady Flows by Forced Oscillation Tests, Journal of Ship Research, 2014, v25(1), pp 20-29.

[18] Yun Gao, Shixiao Fu*, Leixin Ma, Yifan Chen. Experimental investigation of the response performance of VIV on a flexible riser with helical strakes, Ships and Offshore Structures, 2014.

[17] Shixiao Fu*, Yuwang Xu, Yin Chen, Seabed Effects on the Hydrodynamics of a Circular Cylinder Undergoing Vortex-Induced Vibration at High Reynolds Number, Journal of Waterway, Port, Coastal, and Ocean Engineering, 2014, v140(3), 04014008.

[16] Shixiao Fu*, Jungao Wang, Rolf Baarholmb, Jie Wuc, C. M. Larsend , 2014. Features of Vortex-Induced Vibration by Oscillatory Flow, Journal of Offshore Mechanics and Arctic Engineering.

[15] Ying Chen; Shixiao Fu*; Yuwang Xu; Dixia Fan, 2013. High order force components of a near-wall circular cylinder oscillating in transverse direction in steady current,Ocean Engineering, Vol.74,pp.37-47

[14]Shixiao Fu,Yuwang Xu,Ying Chen ,2013. Seabed Effects on the Hydrodynamics of Circular Cylinder Undergoing Vortex Induced Vibration at High Reynolds Number, J.Waterway,Port,Coastal,and Ocean Engineering

[13] Yuwang Xu, Shixiao Fu*, Ying Chen, Qian Zhong, Dixia Fan, 2013. Experiment Investigation on Vortex Induced Forces of Oscillating Cylinder at High Reynolds Number, Ocean System Engineering (ISSN2233-7059), Vol.3, No.3, pp167-180.

[12] Xiqia Chen, Shixiao Fu*, Leijian Song, 2013. Stress Analysis Model for Un-bonded Umbilical Cables, Ocean System Engineering(ISSN2233-7059), Vol3, No.2, pp97-122.

[11] Shixiao Fu*, Yuwang Xu, Ke Hu, Yu Zhang, 2013. Experimental Study on Hydrodynamics of Floating Cylinder in Oscillatory and Constant Flows, Marine Structures(ISSN: 0951-8339), Vol34, pp41-55.

[10] Li Li, Shixiao Fu*, 2013. Nonlinear Hydroelastic Analysis of Aquaculture Fish Cage in Irregular Waves, Marine Structures(ISSN: 0951-8339), Vol34, pp56-73.

[9] Shixiao Fu*, Weicheng Cui, 2012. Dynamic Responses of a Ribbon Floating Bridge Under Moving Loads, Marine Structures(ISSN: 0951-8339), Vol.29, No.1, pp246-256.

[8] Li Li; Shixiao Fu*, Yuwang Xu; Jungao Wang; Jianmin Yang, 2012. Dynamic Responses of Floating Fish Cage in Waves and Current, Ocean Engineering(ISSN:0029-8018), Vol.72, pp297-303.

[7] Shixiao Fu*, Torgeir Moan, 2012. Dynamic analyses of floating fish cage collars in waves, Aquacultural Engineering (ISSN:0144-8609), Vol.47, pp7-15.

[6] Xujun Chen, Torgeir Moan, Shixiao Fu, 2010. Extreme Response of Very Large Floating Structure Considering Second-Order Hydroelastic Effects in Multidirectional Irregular Waves, Journal of Offshore Mechanics and Arctic Engineering(ISSN:0892-7219), Vol.132.

[5] Wang Cong, Shixiao Fu*, Cui Weicheng, 2009. Hydroelasticity Based Fatigue Assessment of the Connector for a Ribbon Bridge Subjected to a Moving Load, Marine Structures(ISSN: 0951-8339) , Vol.22 No.2, pp246-260.

[4] Cong Wang, Shixiao Fu, Weicheng Cui, 2009, Ribbon Bridge in Waves Based on Hydroelasticity Theory, Frontiers of Architecture and Civil Engineering in China(ISSN: 1673-7407), Vol.3 No.1, pp57-62.

[3] Shixiao Fu, Torgeir Moan, Xujun Chen, Weicheng Cui, (2007), Hydroelastic analysis of flexible floating interconnected structures. Ocean Engineering, Vol. 34, 1516–1531

[2] Wang Cong, Fu Shixiao, Li Ning, Cui Weicheng and Lin Zhuming, (2006) Dynamic analysis of a pontoon- separated floating bridge subjected to a moving load. China Ocean Engineering, 20(3): 419-430.

[1] Shixiao Fu, Weicheng Cui, Xujun Chen, Cong Wang, (2005), Hydroelastic analysis of a nonlinearly connected floating bridge subjected to moving loads, Marine Structures, Vol.18, No.1, 85-107.

本科生课程:《船体振动》

研究生课程:  《海洋工程水弹性力学及其在工程中的应用》

[1]付世晓,曹静,杨建民,陈严飞,沙勇,张恩勇. 阶梯剪切流下顶部可运动斜置立管涡激振动旋转测试装置. CN102410920A

[2]付世晓,陈希恰,许玉旺,钟芊,位巍. 模拟斜向均匀流下深海立管横向自激振动的试验装置. CN102967437A

[3]付世晓,陈蓥,胡克,王俊高. 剪切流下顶部可运动的斜置立管涡激振动旋转测试装置. CN102410919A

[4]付世晓,陈蓥,杨建民,汪学峰,彭涛. 均匀流下受预张力的深海立管列阵模型涡激模拟试验装置. CN102279085A

[5]付世晓,陈蓥,周青,王俊高,宋斌. 斜向均匀流下的深海管道分段模型双向强迫振动实验装置. CN102323032A

[6]付世晓,郭飞,许玉旺,张昱,魏汉迪. 模拟均匀流下深海立管横向自激振动的试验装置. CN102980732A

[7]付世晓,胡克,陈蓥,李鲤,张蒙蒙. 斜向均匀流下的FISHFARM浮筒分段模型双向强迫振动实验装置. CN102313637A

[8]付世晓,胡克,宋磊建,许玉旺. 均匀流和阶梯流下顶部可运动竖置立管涡激振动旋转装置. CN102288376A

[9]付世晓,李鲤,陈蓥,张显涛,许玉旺. 均匀流下的FISHFARM浮筒分段模型双向强迫振动实验装置. CN102359856A

[10]付世晓,李鲤,李曼,宋斌. 均匀流下受预张力的深海立管模型涡激振动模拟试验装置. CN102323025A

[11]付世晓,李曼,李鲤,周青. 实雷诺数涡激振动试验柔性立管模型. CN102323023A

[12]付世晓,李曼,王俊高,陈蓥,宋斌. 均匀流下的深海立管分段模型双向强迫振动实验装置. CN102313638A

[13]付世晓,马磊鑫,石茜,欧绍武,蔡曦,许婉婷. 一种均匀流下测量细长立管动力响应测试装置. CN104458172A

[14]付世晓,任铁,杨建民,李琳. 双向剪切流和双向阶梯剪切流下立管的涡激振动测试装置. CN102109405A

[15]付世晓,任铁,杨建民,彭涛. 均匀流和阶梯均匀流下竖置立管的涡激振动旋转测试装置. CN102053001A

[16]付世晓,石础,王俊高,李曼,陈蓥. 均匀流下的深海立管分段模型顺流强迫振动实验装置. CN102323028A

[17]付世晓,宋斌,王俊高,胡克. 均匀流下顶端可运动深海立管模型涡激振动模拟试验装置. CN102410918A

[18]付世晓,宋磊建,陈蓥,宋斌. 阶梯流下受预张力的深海立管模型涡激振动模拟试验装置. CN102323026A

[19]付世晓,宋磊建,李曼,王俊高,张蒙蒙. 斜向均匀流下的深海立管分段模型双向强迫振动实验装置. CN102359857A

[20]付世晓,王俊高,李曼,石础,宋磊建. 均匀流下的深海立管分段模型垂直来流强迫振动实验装置. CN102323030A

[21]付世晓,位巍,许玉旺,魏汉迪,陈希恰. 模拟均匀流下两立管模型相互干扰下自激振荡的试验装置. CN102967428A

[22]付世晓,许玉旺,范迪夏,陈希恰,位巍. 模拟均匀流下两立管模型相互干扰下双向自激振荡的装置. CN102967429A

[23]付世晓,许玉旺,范迪夏,郭飞,陈希恰. 基于力反馈原理的涡激振动试验装置控制系统及控制方法. CN102967427A

[24]付世晓,许玉旺,胡克,周青,李鲤. 斜向均匀流下的FISHFRAM浮筒分段模型水平强迫振动实验装置. CN102313635A

[25]付世晓,许玉旺,张昱,郭飞,范迪夏. 模拟均匀流下深海立管双向自激振动的试验装置. CN102967431A

[26]付世晓,许玉旺,钟芊,位巍,郭飞. 模拟斜向均匀流下深海立管双向自激振动的试验装置. CN102967430A

[27]付世晓,杨建民,任铁,李润培. 剪切流下斜置立管的涡激振动旋转测试装置. CN102053000A

[28]付世晓,杨建民,任铁,汪学锋. 阶梯剪切流下斜置立管的涡激振动旋转测试装置. CN102072805A

[29]付世晓,杨建民,汪学锋,彭涛. 阶梯流下顶部可运动深海立管列阵模型涡激振动试验装置. CN102305696A

[30]付世晓,张蒙蒙,周青,宋斌,宋磊建. 均匀流下的深海管道分段模型垂直来流强迫振动实验装置. CN102359855A

[31]付世晓,张显涛,周青,许玉旺,胡克. 均匀流下的FISHFRAM浮筒分段模型水平强迫振动实验装置. CN102359854A

[32]付世晓,周青,胡克,李鲤,许玉旺. FISHFARM浮筒分段实验模型. CN102323039A

[33]付世晓,周青,李鲤. 均匀流下顶端可运动深海立管列阵模型涡激振动试验装置. CN102305697A

[34]付世晓,周青,李曼. 阶梯流下顶端可运动深海立管模型涡激振动模拟试验装置. CN102313636A

[35]付世晓,周青,宋斌. 深海柔性立管模型涡激振动试验测量分析系统. CN102323024A

[36]付世晓,周青,张蒙蒙,李曼,宋磊建. 均匀流下的深海管道分段模型双向强迫振动实验装置. CN102323031A

[37]马磊鑫,陈逸凡,付世晓,林易,欧绍武,蔡曦. 垂直强迫振荡下的深海细长立管的动力响应测试装置. CN104406753A

[38]马磊鑫,付世晓,欧绍武,蔡曦,冯辉,易涵镇. 一种斜向均匀流下测量细长立管动力响应装置. CN104502044A

[39]马磊鑫,苏琳,林易,付世晓,石茜,欧绍武,蔡曦. 水平强迫振荡状态下的深海细长立管的动力响应测试装置. CN104458171A

[40]马磊鑫,苏琳,欧绍武,蔡曦,冯辉,付世晓. 一种水平斜向强迫振荡下测量细长立管动力响应装置. CN104502042A

[41]马磊鑫,许婉婷,付世晓,曾亚东,林易,欧绍武,蔡曦. 一种剪切流下测量细长立管动力响应装置. CN104502058A

[42]石茜,马磊鑫,苏琳,付世晓,曾亚东,易涵镇. 双向强迫振荡状态下的深海细长立管的动力响应测试装置. CN104406754A

[43]苏琳,陈逸凡,曾亚东,马磊鑫,欧绍武,蔡曦,冯辉,付世晓. 模拟海底管土与水平强迫振荡测量细长立管动力响应装置. CN104502043A


校优异学位论文:

马磊鑫


君正学者导师

(1)中国造船工程协会一等奖,第一完成人(2024)

(2)上海市科技进步一等奖,第一完成人(2022)

(3)上海市科学技术进步一等奖,第二完成人(2018)

(4)海洋工程科学技术奖“特等奖”,第一完成人(2018)

(5)36365线路检测中心十大科技进展,2022


(1)国家杰出青年基金延续资助,2024

(2)36365线路检测中心思源学者,2024

(3)美国船舶与海洋工程师协会会士(SNAME Fellow),2024

(4)科学探索奖,2022

(5)挪威技术科学院院士,2020

(6)国家杰出青年基金,2018

(7)国家万人计划,2019

(8)科技部中青年科技创新领军人才,2018

(9)上海市优秀学术带头人,2018

(10)江苏省双创人才计划,2016

(11)36365线路检测中心特别研究员计划,2009

(12)36365线路检测中心晨星奖励人才计划,2008


版权所有 © 2014 36365线路检测中心(中国)股份有限公司 沪交ICP备05053   流量统计