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As is known to all, the classical finite element method (FEM) always fails to effectively solve the wave problems in 

the relatively large wave numbers due to the troublesome numerical error issue. In this paper, the standard FEM 

with edge-based gradient smoothing technique and Bathe time integration method is developed to analyze the 

transient wave propagation problems in inhomogeneous media. We explicitly show that the numerical error of the 

calculated solutions for transient wave propagation problems consists of two different parts, namely the spatial 

discretization error and the temporal discretization error. Due to the edge-based gradient smoothing technique 

and the appropriate numerical dissipation effects from Bathe time integration scheme, it is found that the total 

numerical error can be significantly suppressed and more accurate numerical solutions can be obtained. Several 

typical numerical examples have been conducted to examine the capacity of the proposed method in solving 

transient wave propagation problems in inhomogeneous media. 
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. Introduction 

Despite the great success of the classical finite element method (FEM)

n various engineering applications [1–3] , so far there still exists sev-

ral unsolved problems for the FEM. Among them, one well-known in-

ractable problem is the simulation of the short wavelength (high fre-

uency) in wave propagation problems. Due to the particularity of the

ifferential operator in the governing equation for waves, the corre-

ponding finite element (FE) solutions always suffer from the trouble-

ome numerical error issue [4–8] . 

Actually, the total numerical error of the numerical solutions for

ransient wave propagation problems mainly consists of two different

arts, the first part is the spatial discretization error which is related to

he spatial discretization (namely the used mesh pattern) and the second

art is the temporal discretization error which is mainly from the used

ime integration scheme [9] . When the classical finite element method

s employed to solve the transient wave propagation problems, the mag-

itude of the above mentioned numerical dispersion error will expand

nd accumulate quickly with the increase of the considered wave num-

er and time. In consequence, the accuracy of the numerical solutions

an be severely ruined and the obtained numerical results usually be-

ome very erroneous [10–12] . In addition, the finite element solutions of
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ransient wave propagation problems also suffer from the troublesome

numerical anisotropy ” issue [9] , that is the accuracy of the calculated

olutions severely depends on the wave propagation directions even if

he medium is isotropic and the employed mesh is uniform. When the

ow order linear element is used, this effect will be even more severe. 

In addition to the classical finite element method, there are also

any other different numerical techniques can be successfully used to

ackle the transient wave propagation problems, such as the bound-

ry element [13 , 14] or boundary-type discretization techniques [15–

1] , meshfree method [22–29] , spectral element method [30 , 31] , mass-

edistributed FEM [32–34] and several other hybrid numerical methods

35–39] . Although these numerical techniques can relieve the numer-

cal error issue to a certain extent and improve the quality of the nu-

erical solution for wave propagation problems. However, the numer-

cal error can still not be completely removed and all of these methods

lso have their own weakness and conditions of applicability. For exam-

le, the standard boundary element approach always result in the non-

ymmetric and dense system matrices, so more storage requirements and

omputational cost are also required [40] . The meshfree methods usu-

lly need relatively expensive numerical integration and several extra

rucial parameters (such as the influence domain, the weight functions,

he function bases and so on) usually should be carefully determined

41 , 42] . The spectral element method are very effective to control the
g). 
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Fig. 1. General problem domain with different media. 

 

c

𝑢  

𝑣  

i  

Γ
 

t

∑
i

 

∑
 

 

i  

s  

m

Π  

i  

e  

c

 

t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Γ

i  

s  

Γ

⎡⎢⎢  
umerical error for one-dimensional wave propagation problems, but it

till has difficulties in solving general two- and three-dimensional prob-

ems in complex geometries [30 , 31] . To the authors’ best knowledge,

here still exists no ideal numerical approach to perfectly solve the tran-

ient wave propagation problem, and this is still a very challenging issue

n modern computation acoustics [43] . 

In recent years, the smoothed finite element method (S-FEM) have

een proposed to solve various engineering problems [44–51] . The S-

EM is formulated by combining the standard FEM with the gradient

moothing technique (GST) from the meshfree method. Due to the “soft-

ning effects ” from the GST, S-FEM can provide a softer and appropri-

te system stiffness which is closer to the real stiffness of the considered

ystem than the standard FEM. It is found that S-FEM can significantly

educe the numerical error in acoustic analysis and produce more ac-

urate numerical solutions than the traditional FEM [52–55] . However,

ost of the previous published papers mainly focus on investigating

he abilities and behaviors of the S-FEM in solving steady-state acoustic

ave problems in which the time integration is not considered. Whether

he S-FEM also behaves very well in solving transient wave problems is

till unclear so far. The present work tries to meet this need and makes

ttempt to examine the performance of the S-FEM in solving transient

ave propagation problems in inhomogeneous media. 

In this paper, the edge-based S-FEM, which combines the standard

EM with the edge-based GST, is employed for spatial discretization

o solve the transient wave propagation problems in inhomogeneous

edia. Note that there always exists relatively large spatial discretiza-

ion error in the relatively large wave number range, the obtained short

avelength modes (or high frequency wave modes) are always inaccu-

ate and then the total solution might be unreliable. For the considered

ransient wave propagation problems in this work, the Bathe time in-

egration scheme will be used for temporal discretization. One impor-

ant property of the Bathe time integration method is that there exists

ppropriate numerical dissipation effects and the above-mentioned in-

ccurate short wavelength modes can be effectively suppressed, hence

ery accurate numerical solutions can be always reached for transient

ave propagations. In this work we will detailedly investigate the dif-

erent numerical dispersion error components in solving transient wave

ropagation problem. It is explicitly shown that the spatial discretiza-

ion error and temporal discretization error always appear together and

ffect each other in transient wave analysis. 

The present paper is structured as follows: Section 2 presents the fun-

amental formulation of the transient wave in inhomogeneous media.

he detailed formulation of the edge-based gradient smoothing tech-

ique in inhomogeneous media is shown in Section 3 . Section 4 includes

he dispersion analysis of the present approach for transient wave prob-

ems. A number of supporting numerical experiments and the related

onclusions are then summarized in the remaining sections. 

. Formulation of the transient wave propagation in 

nhomogeneous media 

As shown in Fig. 1 , the considered problem domain Ω consists of two

ub-domains Ω1 and Ω2 with two different media, namely Ω = Ω1 ∪Ω2 ,

is the interface of the two different media and ΓN is the imposed Neu-

ann boundary condition. n 1 and n 2 represent the outward unit nor-

als corresponding to Ω1 and Ω2 , respectively. 

For the basic transient wave problems, the corresponding governing

quation can be given by [56] 

 

 

 

 

 

∇ 

2 𝑢 1 − 

1 
𝑐 2 1 
�̈� 1 = 0 , in Ω1 

∇ 

2 𝑢 2 − 

1 
𝑐 2 2 
�̈� 2 = 0 , in Ω2 

(1)

n which ∇ 

2 is the Laplace operator, u 1 and u 2 are the solution variables

such as displacements), c 1 and c 2 are the wave speed in different media,

he overdot denotes the derivative with respect to time. 
⎣
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On the interface Γ of the different media, the following boundary

onditions should be satisfied 

 1 = 𝑢 2 (2)

 1 = 𝑣 2 (3)

n which v 1 and v 2 denote the normal particle velocities on the interface

for two different media. 

Based on the general principle of virtual work, the governing equa-

ions in Eq. (1) can be written by 

2 

𝑖 =1 
∫Ω𝑖 �̄� ( ∇ 

2 𝑢 𝑖 − 

1 
𝑐 2 
𝑖 

�̈� 𝑖 ) 𝑑Ω = 0 (4) 

n which �̄� denotes any arbitrary “virtual displacement distributions ”. 

By using the divergence theorem and integrating by parts, we have

2 

𝑖 =1 

( 

∫Ω𝑖 ∇ ̄𝑢 ⋅ ∇ 𝑢 𝑖 dΩ + 

1 
𝑐 2 
𝑖 
∫Ω𝑖 �̄� ̈𝑢 𝑖 dΩ − ∫Γ𝑁 �̄� 

(
∇ 𝑢 𝑖 ⋅ 𝐧 𝑖 

)
dΓ

) 

= 0 (5)

It is known that the specific constraints in Eq. (2) can be achieved

n the assemblage of the related system matrices. Here the constraint

hown in Eq. (3) is imposed by using the well-known Lagrange multiplier

ethod [1] , then we can obtain 

∗ = Π − ∫Γ 𝜆
(
𝑣 1 + 𝑣 2 

)
dΓ (6)

n which Π is the original total potential energy, Π∗ is the new defined

nergy functional in which the extra constraints shown in Eq. (3) is

onsidered, 𝜆 is the Lagrange multiplier. 

By invoking 𝛿Π∗ = 0 and using the standard finite element interpola-

ion [1] , we can obtain the following matrix equations 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 
𝑐 2 1 

∫Ω1 
𝐍 

𝑇 
𝑓 1 
𝐍 𝑓 1 ̈

𝐮 1 dΩ + ∫Ω1 

(
∇ 𝐍 𝑓 1 

)𝑇 
∇ 𝐍 𝑓 1 

𝐮 1 dΩ − ∫Γ𝑁 𝐍 

𝑇 
𝑓 1 

(
∇ 𝑝 1 ⋅ 𝐧 1 

)
dΓ − ∫(

∇ 𝐍 𝑓 1 

)𝑇 
𝐧 1 𝐍 𝜆𝑐 1 𝝀dΓ = 0 

1 
𝑐 2 2 

∫Ω2 
𝐍 

𝑇 
𝑓 2 
𝐍 𝑓 2 ̈

𝐮 2 dΩ + ∫Ω2 

(
∇ 𝐍 𝑓 2 

)𝑇 
∇ 𝐍 𝑓 2 

𝐮 2 dΩ − ∫Γ𝑁 𝐍 

𝑇 
𝑓 2 

(
∇ 𝑝 2 ⋅ 𝐧 2 

)
dΓ

− ∫Γ
(
∇ 𝐍 𝑓 2 

)𝑇 
𝐧 2 𝐍 𝜆𝑐 2 𝝀dΓ = 0 

− ∫Γ 𝐍 𝜆𝐧 1 
(
∇ 𝐍 𝑓 1 

)𝑇 
𝑐 1 𝐮 1 dΓ − ∫Γ 𝐍 𝜆𝐧 2 

(
∇ 𝐍 𝑓 2 

)𝑇 
𝑐 2 𝐮 2 dΓ = 0 

(7) 

n which 𝐍 𝑓 1 
, 𝐍 𝑓 2 

and N 𝜆 are the nodal interpolation functions corre-

ponding to the two different sub-domains ( Ω1 and Ω2 ) and the interface

, u 1 , u 2 and 𝝀 are the solution variables need to be calculated. 

The above matrix equations can be further simplified by 

 

 

 

 

𝐌 1 𝟎 𝟎 
𝟎 𝐌 2 𝟎 
𝟎 𝟎 𝟎 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
�̈� 1 
�̈� 2 
�̈�

⎤ ⎥ ⎥ ⎦ + 

⎡ ⎢ ⎢ ⎣ 
𝐊 1 𝟎 𝐀 

𝟎 𝐊 2 𝐆 

𝐀 

𝑇 𝐆 

𝑇 𝟎 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝐩 1 
𝐩 2 
𝝀

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
𝐑 1 
𝐑 2 
𝟎 

⎤ ⎥ ⎥ ⎦ (8)
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Fig. 2. The edge-based smoothing domains in the problem domain with different materials. 
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n which 

 1 = 

1 
𝑐 2 1 

∫Ω1 
𝐍 

𝑇 
𝑓 1 
𝐍 𝑓 1 

dΩ, 𝐌 2 = 

1 
𝑐 2 2 

∫Ω2 
𝐍 

𝑇 
𝑓 2 
𝐍 𝑓 2 

dΩ

 1 = ∫Ω1 

(
∇ 𝐍 𝑓 1 

)𝑇 
∇ 𝐍 𝑓 1 

dΩ, 𝐊 2 = ∫Ω2 

(
∇ 𝐍 𝑓 2 

)𝑇 
∇ 𝐍 𝑓 2 

dΩ

 = − ∫Γ
(
∇ 𝐍 𝑓 1 

)𝑇 
𝐧 1 𝐍 𝜆𝑐 1 dΓ, 𝐆 = − ∫Γ

(
∇ 𝐍 𝑓 2 

)𝑇 
𝐧 2 𝐍 𝜆𝑐 2 dΓ

 1 = ∫Γ𝑁 𝐍 

𝑇 
𝑓 1 

(
∇ 𝑢 1 ⋅ 𝐧 1 

)
dΓ, 𝐑 2 = ∫Γ𝑁 𝐍 

𝑇 
𝑓 2 

(
∇ 𝑢 2 ⋅ 𝐧 2 

)
dΓ

(9) 

. Formulation of the edge-based gradient smoothing technique 

n inhomogeneous media 

In this work, the standard finite element scheme in conjunction with

he edge-based gradient smoothing technique is used for spatial dis-

retization. As usual, we named the present method as the edge-based

moothed FEM (ES-FEM). Following the similar steps in several pub-

ished papers about ES-FEM [44 , 48 , 51] , we firstly create the related

dge-based smoothing domains to implement the gradient smoothing

perations. As shown in Fig. 2 , the standard triangular meth is used

s the background mesh, here we use the different colors to describe

he different domain with different media. As a result, each edge-based

moothing domain is constructed by connecting the endpoints of the

onsidered edge and the centroids of two neighboring elements, so each

dge corresponds to one edge-based smoothing domain. For the inner

dges, each smoothing domain has two smoothing sub-domains; while

or the boundary edges the obtained smoothing domain only has one

moothing sub-domain. 

However, for the problem domain with different media, the inter-

ace Γ between two different media should be regarded as the global

oundary. Therefore, each edge along the interface corresponds to two

ndependent smoothing domains (see Fig. 2 ). 

Therefore, for the inner and global boundary edges the correspond-

ng smoothed element stiffness matrix is given by [48 , 51] 

̄
 

𝑒 = ∫Ω𝑠 
𝑖 

(
�̄� 𝑖 

)𝑇 �̄� 𝑖 dΩ (10) 

n which Ω𝑠 
𝑖 

( i = 1, 2) is the obtained edge-based smoothing domain, �̄� 𝑖 

 i = 1, 2) is the smoothed gradient matrix in the problem domain with

ifferent media. 
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For the edges along the interface Γ, the corresponding element stiff-

ess matrix is given by 

̄
 

𝑒 = ∫Ω𝑠 1 
�̄� 

𝑇 
1 �̄� 1 dΩ + ∫Ω𝑠 2 

�̄� 

𝑇 
2 �̄� 2 dΩ (11) 

For the wave propagation in a pre-stressed membrane, the relation-

hip between displacement u and particle velocity v is given by 

 = − 𝑐∇ 𝑢 ⋅ 𝐧 (12)

n which c is the wave propagation speed. 

From Eq. (12) , it is seen that the particle velocity v is related to the

radient of the displacement u . In this work, the edge-based gradient

moothing operation is performed by smoothing the particle velocity v

nd the smoothed particle velocity can be obtained by 

̄ 
(
𝐱 𝑘 

)
= ∫Ω𝑠 

𝑘 

𝑣 
(
𝐱 𝑘 

)
𝑊 

(
𝐱 − 𝐱 𝑘 

)
dΩ (13) 

n which W ( x − x k ) is a pre-defined smoothing function given by [44] 

 

(
𝐱 − 𝐱 𝑘 

)
= 

{ 

0 𝐱 ∉ Ω𝑠 
𝑘 

1∕ 𝐴 

𝑘 
𝑠 𝐱 ∈ Ω𝑠 

𝑘 

(14) 

n which 𝐴 

𝑘 
𝑠 stands for the area of the smoothing domain. 

Substituting Eq. (12) and Eq. (14) into Eq. (13) , and using the diver-

ence theorem, we have 

̄ 
(
𝐱 𝑘 

)
= − 

𝑐 

𝐴 

𝑠 
𝑘 
∫Ω𝑠 

𝑘 

∇ 𝑢 dΩ = − 

𝑐 

𝐴 

𝑠 
𝑘 
∫Γ𝑠 

𝑘 

𝑢 ⋅ 𝐧 dΓ (15)

n which Γ𝑘 𝑠 is the boundary of the edge-based smoothing domain, n is

he corresponding outward unit normal vector. 

Using the usual finite element interpolation scheme, the smoothed

article velocity field can be written by 

̄ 
(
𝐱 𝑘 

)
= − 𝑐 

∑
𝑖 ∈𝑀 𝑘 

�̄� 𝑖 ( 𝐱 ) 𝑢 𝑖 (16)

n which M k is the total number of nodes which have contributions to

orm the smoothed gradient matrix �̄� 𝑖 , namely the involved nodes in the

moothing domain. 
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Fig. 3. The employed uniform mesh pattern and the illustration of involved nodes for dispersion analysis: (a) FEM; (b) ES-FEM. 
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In this work the Gauss integration scheme is used to perform the

elated numerical integration along the boundary of smoothing domain

hich consists of N s segments, then smoothed gradient matrix �̄� 𝑖 can be

btained by 

̄
 𝑖 ( 𝐱 ) = 

1 
𝐴 

𝑠 
𝑘 

𝑁 𝑠 ∑
𝑞=1 

⎛ ⎜ ⎜ ⎝ 
𝑁 𝑔 ∑
𝑟 =1 

𝑤 𝑟 𝐍 𝑖 ( 𝐱 ) 
[ 
𝑛 𝑥 
𝑛 𝑦 

] ⎞ ⎟ ⎟ ⎠ (17)

n which N g is the number of Gauss points in each segment, the number

f Gauss points is determined by the order of the used nodal shape func-

ions, w r is the weighting coefficients, n x and n y are the components of

he outward normal vector. 

Then the smoothed global stiffness can be obtained by assembling

ach smoothed element stiffness matrix as in the standard finite element

cheme, namely 

̄
 = 

∑
�̄� 

( 𝑘 ) = 

∑( 

∫Ω𝑠 
𝑘 

�̄� 

𝑇 �̄� dΩ

) 

= 

∑(
�̄� 

𝑇 �̄� 𝐴 

𝑠 
𝑘 

)
(17)

n which �̄� 

( 𝑘 ) is smoothed element stiffness matrix for edge k . 

. Dispersion analysis of the ES-FEM for transient wave problems 

It is known that the dispersion error of the numerical solutions for

ransient wave propagation problems always consists of the contribu-

ions from spatial discretization and the contributions from temporal

iscretization. Here we firstly investigate the spatial discretization er-

or. 

.1. Spatial discretization error 

The spatial discretization error is closely related to the used mesh

attern. In this paper the uniform mesh with average nodal space h

hown in Fig. 3 is used for dispersion analysis. Although the non-uniform

esh are always employed in real engineering computation, the analysis

nd discussion here still have great significance. 

For the time independent form of the wave equation, the following

atrix equation can be obtained without considering the boundary con-

ition [56] 

𝐮 − 𝑘 2 𝐌𝐮 = 𝟎 (18)
214 
n which u is the vector of unknown solution variables, k is the exact

ave number, K and M are stiffness matrix and mass matrix, respec-

ively. 

As shown in Fig. 3 , for the standard FEM and the present ES-FEM

odel all the nodes which have contributions to form the system matri-

es associated with the central node S ( p,q ) (red solid node) are marked

n blue solid nodes, here p and q represent the row number and column

umber, respectively. It is very clear to see that the number of involved

odes in ES-FEM model is much larger than that in the standard FEM

odel due to the additional used edge-based gradient smoothing tech-

ique. 

Note that no boundary conditions are considered, so the numerical

olutions corresponding to the involved nodes in Fig. 3 should have the

ame amplitude and can be represented by 

 = 𝐴 𝑒 𝑗 𝑘 ℎ 𝐧 ⋅𝐱 (19)

n which 𝑗 = 

√
−1 and A is the amplitude of the numerical solutions

nd k h is the numerical wave number, n is a unit vector denotes the

ave propagation direction and x is the position vector of the considered

oint. 

Substituting the Eq. (19) into Eq. (18) , and only looking at the equa-

ion corresponding to the middle red node of a patch of elements, we

an obtain [56] 

𝐃 stif f − 𝑘 2 𝐃 mass 
)
𝐮 = 𝟎 (20)

n which D stiff and D mass are the matrices corresponding to the system

tiffness matrix K and system mass matrix M . 

By referring to the node distributions in Fig. 3 , for the standard FEM

nd ES-FEM model we have 

 

FEM 

stif f = 𝐊 

FEM 

𝑝,𝑞 + 𝐊 

FEM 

𝑝,𝑞−1 𝑒 
− 𝑗 𝑘 ℎ ℎ cos 𝜃 + 𝐊 

FEM 

𝑝,𝑞+1 𝑒 
𝑗 𝑘 ℎ ℎ cos 𝜃+ 

 

FEM 

𝑝 −1 ,𝑞−1 𝑒 
𝑗 𝑘 ℎ ℎ ( − cos 𝜃− sin 𝜃) + 𝐊 

FEM 

𝑝 −1 ,𝑞 𝑒 
𝑗 𝑘 ℎ ℎ ( − sin 𝜃) + 

 

FEM 

𝑝 +1 ,𝑞 𝑒 
𝑗 𝑘 ℎ ℎ sin 𝜃 + 𝐊 

FEM 

𝑝 +1 ,𝑞+1 𝑒 
𝑗 𝑘 ℎ ℎ ( cos 𝜃+ sin 𝜃) 

(21) 

 

FEM 

mass = 𝐌 

FEM 

𝑝,𝑞 + 𝐌 

FEM 

𝑝,𝑞−1 𝑒 
− 𝑗 𝑘 ℎ ℎ cos 𝜃 + 𝐌 

FEM 

𝑝,𝑞+1 𝑒 
𝑗 𝑘 ℎ ℎ cos 𝜃+ 

 

FEM 

𝑝 −1 ,𝑞−1 𝑒 
𝑗 𝑘 ℎ ℎ ( − cos 𝜃− sin 𝜃) + 𝐌 

FEM 

𝑝 −1 ,𝑞 𝑒 
𝑗 𝑘 ℎ ℎ ( − sin 𝜃) + 

 

FEM 

𝑝 +1 ,𝑞 𝑒 
𝑗 𝑘 ℎ ℎ sin 𝜃 + 𝐌 

FEM 

𝑝 +1 ,𝑞+1 𝑒 
𝑗 𝑘 ℎ ℎ ( cos 𝜃+ sin 𝜃) 

(22) 
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Fig. 4. The spatial dispersion properties for the standard FEM and ES-FEM in 

different wave propagation directions: (a) FEM; (b) ES-FEM. 
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Fig. 5. The period elongation properties of the standard FEM and the present 

ES-FEM with Bathe time integration scheme: (a) FEM; (b)ES-FEM. 
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ES−FEM 

stif f = 𝐊 

ES−FEM 

𝑝,𝑞 + 𝐊 

ES−FEM 

𝑝,𝑞−1 𝑒 − 𝑗 𝑘 ℎ ℎ cos 𝜃 + 𝐊 

ES−FEM 

𝑝,𝑞+1 𝑒 𝑗 𝑘 ℎ ℎ cos 𝜃

 𝐊 

ES−FEM 

𝑝 −2 ,𝑞−1 𝑒 
𝑗 𝑘 ℎ ℎ ( − cos 𝜃−2 sin 𝜃) + 𝐊 

ES−FEM 

𝑝 +2 ,𝑞+1 𝑒 
𝑗 𝑘 ℎ ℎ ( cos 𝜃+2 sin 𝜃) 

 𝐊 

ES−FEM 

𝑝 −1 ,𝑞−2 𝑒 
𝑗 𝑘 ℎ ℎ ( −2 cos 𝜃− sin 𝜃) + 𝐊 

ES−FEM 

𝑝 −1 ,𝑞−1 𝑒 
𝑗 𝑘 ℎ ℎ ( − cos 𝜃− sin 𝜃) + 

 

ES−FEM 

𝑝 −1 ,𝑞 𝑒 𝑗 𝑘 ℎ ℎ ( − sin 𝜃) + 𝐊 

ES−FEM 

𝑝 −1 ,𝑞+1 𝑒 
𝑗 𝑘 ℎ ℎ ( cos 𝜃− sin 𝜃) + 𝐊 

ES−FEM 

𝑝 +1 ,𝑞−1 𝑒 
𝑗 𝑘 ℎ ℎ ( − cos 𝜃+ sin 𝜃) +

 

ES−FEM 

𝑝 +1 ,𝑞 𝑒 𝑗 𝑘 ℎ ℎ ( sin 𝜃) + 𝐊 

ES−FEM 

𝑝 +1 ,𝑞+1 𝑒 
𝑗 𝑘 ℎ ℎ ( cos 𝜃+ sin 𝜃) + 𝐊 

ES−FEM 

𝑝 +1 ,𝑞+2 𝑒 
𝑗 𝑘 ℎ ℎ ( 2 cos 𝜃+ sin 𝜃) + 

(23) 

 

ES−FEM 

mass = 𝐌 

ES−FEM 

𝑝,𝑞 + 𝐌 

ES−FEM 

𝑝,𝑞−1 𝑒 − 𝑗 𝑘 ℎ ℎ cos 𝜃 + 𝐌 

ES−FEM 

𝑝,𝑞+1 𝑒 𝑗 𝑘 ℎ ℎ cos 𝜃

 𝐌 

ES−FEM 

𝑝 −2 ,𝑞−1 𝑒 
𝑗 𝑘 ℎ ℎ ( − cos 𝜃−2 sin 𝜃) + 

 

ES−FEM 

𝑝 +2 ,𝑞+1 𝑒 
𝑗 𝑘 ℎ ℎ ( cos 𝜃+2 sin 𝜃) + 𝐌 

ES−FEM 

𝑝 −1 ,𝑞−2 𝑒 
𝑗 𝑘 ℎ ℎ ( −2 cos 𝜃− sin 𝜃) 

 𝐌 

ES−FEM 

𝑝 −1 ,𝑞−1 𝑒 
𝑗 𝑘 ℎ ℎ ( − cos 𝜃− sin 𝜃) + 

 

ES−FEM 

𝑝 −1 ,𝑞 𝑒 𝑗 𝑘 ℎ ℎ ( − sin 𝜃) + 𝐌 

ES−FEM 

𝑝 −1 ,𝑞+1 𝑒 
𝑗 𝑘 ℎ ℎ ( cos 𝜃− sin 𝜃) + 𝐌 

ES−FEM 

𝑝 +1 ,𝑞−1 𝑒 
𝑗 𝑘 ℎ ℎ ( − cos 𝜃+ sin 𝜃) +

 

ES−FEM 

𝑝 +1 ,𝑞 𝑒 𝑗 𝑘 ℎ ℎ ( sin 𝜃) + 𝐌 

ES−FEM 

𝑝 +1 ,𝑞+1 𝑒 
𝑗 𝑘 ℎ ℎ ( cos 𝜃+ sin 𝜃) + 𝐌 

ES−FEM 

𝑝 +1 ,𝑞+2 𝑒 
𝑗 𝑘 ℎ ℎ ( 2 cos 𝜃+ sin 𝜃) +

(24) 

If there exists non-trivial solutions for Eq. (20) , we must have 

et 
(
𝐃 stif f − 𝑘 2 𝐃 mass 

)
= 𝟎 (25)

It is clear that the matrices D stiff and D stiff contain the numerical wave

umber k , so Eq. (25) describes the relationship between the numerical
h 

215 
ave number k h and exact wave number k . In other words, for any given

umerical wave number k h , we can obtain the corresponding exact wave

umber k using Eq. (25) , then we can obtain the spatial discretization

rror which is defined by k / k h . 

For both the standard FEM and the present ES-FEM, Fig. 4 gives the

alculated spatial dispersion error k / k h in different wave propagation di-

ections versus the non-dimensional wave number k h h / 𝜋 ( = ℎ ∕ ( 𝜆ℎ ∕2 ) ) in
hich 𝜆h is the numerical wavelength. Obviously, the values on the hor-

zontal axis also represents the resolution of the wave. From the spatial

ispersion properties shown in the figure, it is seen that for both of the

wo different methods the dispersion error is very small for small non-

imensional wave numbers and will become larger with the increase

f the considered non-dimensional wave number values, however, the

patial dispersion error from the present ES-FEM is clearly smaller than

hat from the standard FEM. 

In addition, we also can find that the spatial dispersion properties of

he standard FEM depend strongly on the wave propagation directions,

amely the standard FEM shows significant “numerical anisotropy ” is-

ue in wave analysis. While this issue can be obviously alleviated to

ome extent by using the present ES-FEM. The reason for this is that the

dge-based gradient smoothing operation is employed in ES-FEM, then

etter numerical solutions can be obtained. 
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Fig. 6. The amplitude decay properties of the standard FEM and the present 

ES-FEM with Bathe time integration scheme: (a) FEM; (b)ES-FEM. 
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Fig. 7. The problem description and used mesh patterns for the two- 

dimensional tube: (a) The geometry description of the tube; (b) The used uni- 

form mesh; (c) The used distorted mesh. 
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.2. Temporal discretization error from the time integration 

From the analysis and discussion in the previous sub-section, we

ave known that the calculated numerical solutions for wave problems

sually suffers from the spatial dispersion error induced from the spatial

iscretization. In this sub-section, the temporal discretization error the

resent ES-FEM with Bathe time integration scheme in solving transient

ave problems will be discussed and examined in details. 

By using the usual finite element interpolation and without consid-

ring the boundary conditions, the general governing matrix equation

or transient wave propagation problems can be written by 

 ̈𝐮 + 𝑐 2 𝐊𝐮 = 𝟎 (26)

The fundamental solution to Eq. (26) has the following form 

 = 𝐴 𝑒 𝑗 ( 𝑘 𝐧 ⋅𝐱− 𝜔 ℎ 𝑡 ) (27)

n which 𝜔 h denotes the numerical angular frequency. 

Substituting Eq. (27) into Eq. (26) and again referring to the mesh

attern in Fig. 3 , we have 

 �̈� + 𝑐 2 𝐃 𝐮 = 𝟎 (28)
mass stif f 

216 
n which the matrices D mass and D stiff have been obtained in Eqs. (21) –

24). 

Using the Bathe time integration scheme for temporal discretization

56] , we have 

 

 

 

 

 

 

 

𝑡 + Δ𝑡 ∕2 �̇� = 

𝑡 �̇� + 

Δ𝑡 
4 

(
𝑡 �̈� + 

𝑡 + Δ𝑡 ∕2 �̈� 
)

𝑡 + Δ𝑡 ∕2 𝐮 = 

𝑡 𝐮 + 

Δ𝑡 
4 

(
𝑡 �̇� + 

𝑡 + Δ𝑡 ∕2 �̇� 
)

𝑡 +Δ𝑡 �̇� = 

1 
Δ𝑡 
𝑡 𝐮 − 

4 
Δ𝑡 
𝑡 + Δ𝑡 ∕2 𝐮 + 

3 
Δ𝑡 
𝑡 +Δ𝑡 𝐮 

𝑡 +Δ𝑡 �̈� = 

1 
Δ𝑡 
𝑡 �̇� − 

4 
Δ𝑡 
𝑡 + Δ𝑡 ∕2 �̇� + 

3 
Δ𝑡 
𝑡 +Δ𝑡 �̇� 

(29) 

n which Δt is the used time step. 

Using Eq. (27) and Eq. (29) , Eq. (28) can be expressed by 

 +2Δ𝑡 𝐮 − 

288 − 94 𝜔 2 Δ𝑡 2 

144 + 25 𝜔 2 Δ𝑡 2 + 𝜔 4 Δ𝑡 4 
𝑡 +Δ𝑡 𝐮 + 

144 + 25 𝜔 2 Δ𝑡 2 

144 + 25 𝜔 2 Δ𝑡 2 + 𝜔 4 Δ𝑡 4 
𝑡 𝐮 = 𝟎 

(30) 

Note that the unknown solution vector u has the fundamental solu-

ion 𝐮 = 𝐴 𝑒 𝑗( 𝑘 𝐧 ⋅𝐱− 𝜔 ℎ 𝑡 ) , from Eq. (30) we can obtain the following equation

56] 

𝑒 − 𝑗 𝜔 ℎ Δ𝑡 
)2 + 𝑚 𝑒 − 𝑗 𝜔 ℎ Δ𝑡 + 𝑛 = 0 (31)

n which 𝑚 = − 

288−94 𝜔 2 Δ𝑡 2 
144+25 𝜔 2 Δ𝑡 2 + 𝜔 4 Δ𝑡 4 and 𝑛 = 

144+25 𝜔 2 Δ𝑡 2 
144+25 𝜔 2 Δ𝑡 2 + 𝜔 4 Δ𝑡 4 , 𝜔 is exact an-

ular frequency which can be obtained from Eq. (25) . 

From Eq. (31) , it is easy to obtain 

 ℎ Δ𝑡 = 𝑗 ln 

( 

− 𝑚 ± 

√
𝑚 

2 − 4 𝑛 
2 

) 

(32)

It is found that the numerical wave number 𝜔 h is a complex num-

er because there exists numerical damping effects in the Bathe time

ntegration technique [56 , 57] . 
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Fig. 8. The displacement results from the standard FEM and ES-FEM for the 

two-dimensional tube: (a) The observation time t = 0.3 s; (b) The observation 

time t = 0.7 s. 
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Fig. 9. The displacement results from uniform and distorted mesh at observa- 

tion time t = 0.7 s for the two-dimensional tube: (a) FEM; (b) ES-FEM. 
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Here Eq. (32) can also be re-written by 

 ℎ Δ𝑡 = Real+ 𝑗 Imag (33)

Then the complex modulus of the numerical wave solution to the

eneral wave equation can be obtained by 

𝐴 𝑒 − 𝑗 𝜔 ℎ Δ𝑡 
||| = 

|||𝐴 𝑒 − 𝑗 ( Re al+ 𝑗 Im ag ) 
||| = 

|||𝐴 𝑒 − 𝑗 Re al+ Im ag 
|||

= 

|||𝐴 𝑒 Im ag 
||| ⋅ |||𝑒 − 𝑗 Re al |||
⏟⏞⏟⏞⏟

=1 

= 

|||𝐴 𝑒 Im ag 
||| (34) 

Then the percentage amplitude decay (AD) per Δt can be calculated

y [57] 

= 1 − 

𝐴 𝑒 Im ag 

𝐴 

= 

(
1 − 𝑒 Im ag 

)
× 100% (35)

In Eq. (33) , the real part of the parameter 𝜔 h Δt corresponds to the

hase position of the numerical wave solution. Note that the exact wave

olution is e − j 𝜔 t , so the percentage period elongation (PE) of the Bathe
217 
ethod can be obtained by 

E = 

( 

𝑇 ℎ 

𝑇 
− 1 

) 

× 100% = 

( 

2π∕ ( Real∕ Δ𝑡 ) 
2π∕ 𝜔 

− 1 
) 

× 100% 

= 

( 

𝜔 

Real∕ Δ𝑡 
− 1 

) 

× 100% (36) 

n which T h is the numerical wave period and T is the exact wave period.

If we use the numerical damping ratio 𝜉h to describe the percentage

mplitude decay as in Ref. [56] , using Eq. (33) we can have 

ℎ = − 

Imag 
Real 

= − 

ln 
(||𝑒 − 𝑗 𝜔 ℎ 𝑡 ℎ ||)
Real 

= − 

1 
2 

ln 
( ||||− 𝑚 ± 

√
𝑚 2 −4 𝑛 
2 

||||
) 

Real 
(37)

Then the percentage amplitude decay per period T is obtain by [56] 

D = 

( 

1 − 𝑒 
2π Imag 

Real 

) 

× 100% = 

(
1 − 𝑒 −2π𝜉ℎ 

)
× 100% (38)
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Fig. 10. The square problem domain with different media: (a) The geometry 

description of the considered square domain; (b) The used uniform mesh; (c) 

The pre-defined paths. 
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Fig. 11. The displacements calculated from the standard FEM and the ES- 

FEM for the two-dimensional square pre-stressed membrane at observation time 

t = 0.4s: (a) Path 1; (b) Path 3. 
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Finally, the total dispersion error c h / c can be expressed by 

𝑐 ℎ 

𝑐 
= 

𝜔 ℎ ∕ 𝑘 ℎ 
𝜔 ∕ 𝑘 

= 

𝑘 

𝑘 ℎ 

𝜔 ℎ 

𝜔 
= 

𝑘 

𝑘 ℎ 

𝑇 

𝑇 ℎ 
(39)

From Eq. (39) , it is seen that the total dispersion error of the cal-

ulated numerical solutions mainly consists of two different parts. The

rst part, which is defined by k / k h , is spatial dispersion error and the

econd part is the temporal dispersion error which is defined by T / T h .

rom Eq. (25) , it is found that the spatial dispersion error is mainly de-

ermined by the used mesh pattern, while the temporal dispersion error

s not only dominated by the used time integration scheme, but also

nfluenced by the spatial dispersion error. Another interesting point is

hat in general the spatial dispersion error satisfies k / k h > 1 and the

emporal dispersion error satisfies T / T h < 1. This means that these two

ifferent error components can be balanced out to some extent. Not

hat the obtained temporal dispersion error is related to the used time

tep Δt , hence for a given mesh pattern (namely for a fixed spatial dis-

ersion error) there should exist an appropriate time step Δt to obtain

ery accurate numerical solutions with minimal total dispersion error

or transient wave problems. However, this “optimal ” time step Δt is in

eneral not easy to obtain and this issue is still a very open question so

ar. 

The period elongation and amplitude decay properties of the stan-

ard FEM and the present ES-FEM with Bathe time integration tech-

ique for CFL = 0.3 are shown in Fig. 5 and Fig. 6 . Here the pre-defined

arameter is given by CFL = c Δt / h [56 , 57] , the values of the CFL number

orresponds to the ratio of the traveled length per time step ( c Δt ) to the

sed average nodal space. From the calculated numerical results shown

n the figures we can find: 

1) Compared to the standard FEM, the period elongation and amplitude

decay from the present ES-FEM is much smaller. The reason for this

is that the ES-FEM can provide much smaller spatial dispersion er-
218 
ror due to the used edge-based gradient smoothing operations. Note

that the temporal dispersion error is also related to the spatial dis-

persion error, so the ES-FEM is also able to produce smaller temporal

dispersion error than the standard FEM. 

2) It is again found that the standard FEM clearly shows the “numeri-

cal anisotropy ” issue, namely the period elongation and amplitude

decay results from the standard FEM vary very much for the differ-

ent wave propagation directions. Though the present ES-FEM also

suffers from this issue, it can be significantly relieved to some extent

thanks to the used edge-based gradient smoothing operations. 

. Numerical examples 

In last section, we have detailedly discussed and analyzed the disper-

ion error properties (including the spatial dispersion error and tempo-

al dispersion error) of the traditional FEM and the present ES-FEM with

athe time integration scheme for transient wave propagation problems.

t is seen that the ES-FEM indeed behaves better in reducing the numeri-

al dispersion error than the traditional FEM. In this section, several typ-

cal numerical examples are considered to examine the performance of
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Fig. 12. The numerical solutions from different methods for the two- 

dimensional square pre-stressed membrane along different paths at observation 

time t = 0.4s: (a) FEM; (b) PES-FEM. 
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he present ES-FEM with Bathe time integration scheme in solving prac-

ical transient wave propagation in inhomogeneous media. It should be

ointed out that all the waves (including incident, reflecting and trans-

itted waves) do not reach the boundary of the computational domain

or the considered time, hence the non-reflecting boundary conditions

such as Dirichlet-to-Neumann map or perfect matched layer) are not

equired in this work. 

.1. The two-dimensional tube 

The first considered numerical example is the scalar wave propaga-

ions in a two-dimensional tube with length l = 1 m and width b = 0.1 m.

s shown in Fig. 7 a, this tube contains two different media. The wave

peeds in these two different media are c 1 = 0.5 m/s and c 2 = 1 m/s. The

xcitation pressure F c is imposed on the bottom side of the tube. Since

ne of its dimensions is much smaller than the other one and all the vari-

bles don’t vary along the horizontal direction, so this problem can be

onsidered as a typical one-dimensional problem even though the prob-

em domain is in a two dimensional space. We assume that a plane wave
219 
 = 0.8sin (20 𝜋t ), t ∈ [0, 0.05] is propagating in this tube. The consid-

red problem domain is divided into uniform and distorted meshes (see

ig. 7 b and Fig. 7 c) with 2 × 8 × 80triangular elements and the Bathe

ime integration technique with CFL = 0.1 is employed to tackle this wave

ropagation problem. Both the numerical results from the standard FEM

nd the ES-FEM will be provided and discussed here. 

Firstly, the displacement results at observation time t = 0.3 s ob-

ained from the standard FEM and the present ES-FEM are plotted in

ig. 8 a. It is seen that the standard FEM results basically agree with the

xact solutions though several spurious oscillations can be found behind

he wave front. However, it is obvious that the ES-FEM results are much

etter than the FEM results and agree very well with the exact solutions.

urthermore, we also calculated the displacement results at observation

ime t = 0.7 s using the FEM and ES-FEM (see Fig. 8 b), the first peak

n the figure is the reflected waves and the second peak is the waves

enetrating the interface of the two different media. We can find that

he performance of the ES-FEM in predicting the physical behaviors of

he waves is much better than the traditional FEM and more accurate

umerical solutions can be obtained. 

In more details, we also investigated the sensitivity of the present ES-

EM with Bathe time integration scheme to mesh distortion in solving

ransient wave propagation problems. The used uniform mesh and dis-

orted mesh are shown in Fig. 7 b and Fig. 7 c. The displacement results

rom FEM and ES-FEM at observation time t = 0.7 s are plotted Fig. 9 .

e can see that more spurious oscillations can be seen in the FEM results

hen using distorted mesh. However, the ES-FEM is less sensitive to the

esh distortion than the standard FEM, and very good solutions can still

e obtained even if the distorted mesh is used. The reason for this is that

he edge-based gradient smoothing technique is used in ES-FEM, so it is

ore suitable to describe real displacement field. 

.2. The two-dimensional square domain 

As shown in Fig. 10 a, the second considered 2D problem is the scalar

ave propagations in a square pre-stressed membrane (length L = 1 m)

ith two different media. The wave speed in this two different media are

 1 = 2 m/s and c 2 = 1 m/s. The uniform triangular mesh with 2 × 80 × 80

lements is employed to discretize the considered problem domain (see

ig. 10 b). A concentrated force F c is imposed at point A . The used con-

entrated force here is a Ricker wavelet and defined by [56] 

 𝑐 = 0 . 4 
[
1 − 2 π2 𝑓 2 𝑝 

(
𝑡 − 𝑡 𝑠 

)2 ] exp (− π2 𝑓 2 𝑝 
(
𝑡 − 𝑡 𝑠 

)2 )
(40)

n which the peak frequency f p = 10 Hz is used here and the time shift

 s = 0.1 s. 

In order to clearly discuss and analyze the numerical results from the

tandard FEM and the present ES-FEM, several pre-defined paths are

hown in Fig. 10 c. Firstly, for CFL = 0.1, the displacements calculated

rom the standard FEM and the ES-FEM along Path 1 at observation

ime t = 0.4 s are plotted in Fig. 11 a. The higher peaks in the figure is

he original incident wave from the source and the lower peak is the

ave reflected by the interface of the two different media. Note that the

orresponding exact solutions to this problem is not easy to obtain, here

he numerical solutions from the traditional FEM with a very fine mesh

re also provided as the reference solutions. From the results shown in

he figure, we can observe that the ES-FEM solution is clearly much

etter than the standard FEM solution and is closer to the reference

olution. In addition, we also calculated the numerical solutions along

ath 3 at observation time t = 0.4 s using the FEM and ES-FEM (see

ig. 11 b). Likewise, the similar points can be found. 

Fig. 12 a gives the FEM solutions along different paths at observation

ime t = 0.4 s. It is known that the exact solutions along Path 1 and

ath 2 should be identical due to the symmetry of this problem. How-

ver, we can find that the FEM solutions are obviously different along

he different paths. The reason for this is that the standard FEM shows

lear numerical anisotropic property even if the considered media are
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Fig. 13. Snapshots of the displacement distributions from different methods for the two-dimensional square pre-stressed membrane at different observation times. 
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sotropic. For comparison, the corresponding numerical solutions from

he ES-FEM are also calculated and shown in Fig. 12 b. It is seen that

he numerical anisotropic effects can be significantly suppressed by the

resent ES-FEM, namely the corresponding numerical solutions from the

S-FEM are almost same in the different wave propagation directions. 

Fig. 13 presents several snapshots of the displacement distributions

rom the different methods at different observation times. The reference

olutions are also presented in the figure for comparison. It is clearly

een that the ES-FEM solutions are closer to the reference solutions and

umerical dispersion error from the ES-FEM is much smaller than that

rom the standard FEM, hence the ES-FEM solutions are smoother and

etter than the FEM ones. 

.3. The two-dimensional scalar wave scattering by a circular object 

As shown in Fig. 14 , the third numerical example we considered here

s still the scalar wave propagation in a square pre-stressed membrane

roblem domain. However, in this case the whole problem domain con-

ains four circular regions; the exterior and interior domain of the cir-

ular regions are different media. The wave source is at the center of

he square domain and the excitation force is still a Ricker wavelet with

agnitude 0.4, peak frequency f p = 10 Hz and time shift t s = 0.1 s. Due
220 
o the symmetry of this considered problem, only the domain V = [0,

] × [0, 1] is modelled in the calculation process. The wave speeds in

hese two considered media are c 1 = 2 m/s and c 2 = 1 m/s. 

The square problem domain is divided into standard triangular mesh

ith average meshsize h = 0.016 m (see Fig. 14 ). For the convenience

f detailedly discussing and comparing the numerical solutions, a pre-

efined line is plotted in Fig. 14 . Firstly, for a fixed CFL = 0.1, we cal-

ulated the displacement solutions at observation time t = 0.4 s using

he standard FEM and ES-FEM along the direction 𝜃 = 45° (see Fig. 14 )

nd the results are shown in Fig. 15 a. The reference solutions in the fig-

re are still from the FEM with a very fine mesh. It is easy to see that

here exist spurious oscillations in the FEM solutions, while the ES-FEM

olutions are obviously better. 

Then the displacement solutions from the FEM and ES-FEM at ob-

ervation time t = 0.8 s are also calculated and plotted in Fig. 15 b to

learly see how the incident wave is affected by the interface of the

wo different media. In Fig. 15 b, the lower peak is the waves reflected

y the interface and the higher peak is the transmitted waves. We can

nd that many spurious oscillations occur in the FEM solutions. While

he ES-FEM can lead to more accurate solutions which are closer to the

eference solutions, so both the reflected and transmitted waves can be

elatively accurately predicted. 
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Fig. 14. The two-dimensional scalar wave scattering by cir- 

cular objects: the problem description and the used triangular 

mesh. 

Fig. 15. The displacement solutions from the FEM and ES-FEM for the two- 

dimensional scalar wave scattering problem at two observation times (a) 

t = 0.4 s; (b) t = 0.8 s. 
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. Concluding remarks 

In this work the edge-based smoothed FEM (ES-FEM) is combined

ith the Bathe time integration scheme to solve the transient wave

ropagation problems in inhomogeneous media. The ES-FEM is used for

patial discretization and the Bathe time integration method is used for

ime discretization. In the ES-FEM, the edge-based gradient smoothing

echnique is employed to provide an appropriate system stiffness of the

onsidered problem, so the spatial dispersion error can be effectively

ontrolled. Due to the numerical dissipation effects in the Bathe time

ntegration method, the spurious short wavelength modes in the total

umerical solution can be effectively suppressed, hence smaller tempo-

al dispersion error can be obtained. The numerical examples show that

he present ES-FEM with Bathe time integration method works very well

n solving transient wave problems and much smaller numerical disper-

ion error (including the spatial dispersion error and temporal disper-

ion error) can be obtained for transient wave problems compared to

he traditional FEM. 

In addition, the present method can produce almost the same nu-

erical solutions with good accuracy in the different wave propaga-

ion directions, while the traditional FEM suffers from the “numerical

nisotropy ” issue and the calculated numerical solutions strongly de-

end on the wave propagations; what’s more, for the transient wave

roblems the present method also shows lower sensitivities to the qual-

ty of the used meshes than the standard FEM, so very reliable numeri-

al solutions can still be reached even if very distorted meshes are em-

loyed. Due to these attractive features, the present ES-FEM with Bathe

ime integration scheme can be regarded as a very good alternative to

he traditional FEM for solving transient wave propagation problems. 
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